ELM-suppression using low-n RMPs in KSTAR

Y.M. Jeona,
\begin{itemize}
 \item J. Parkb, T.E. Evansc, S.A. Sabbaghd, Y.S. Parkd, H.S. Hana, G.Y. Parka, Y.U. Nama, Y.-c. Ghima, Jayhyun Kima, S.W. Yoona, W.H. Koa, K.D. Leea, H.S. Kima, S.H. Seoa, J.Y. Kima, W.C. Kima, Y.K. Oha, J.G. Kwaka, J.K. Jina, H.S. Ahna, D.G. Leea, J.H. Choia, K.S. Leea, H.K. Kima, H.L. Yanga, and KSTAR teama
\end{itemize}

aNational Fusion Research Institute, Daejeon, Korea
bPrinceton Plasma Physics Laboratory, Princeton, NJ, U.S.A.
cGeneral Atomics, San Diego, CA, U.S.A.
dColumbia University, New York, NY, U.S.A.

2013.02.26
\textit{KSTAR Conference}
\textit{Lotte Buyeo Resort, Chungnam, Korea}
ELM control is critical to ITER

• **Significant reduction of ELM energy density required (>1/10)**
 - Expected / Limit ~ 7.0MJ/m² / 0.5MJ/m² ~ 14

• **Various approaches under investigation in KSTAR**
 - ELM pace-making: pellet injection (plan), vertical jogging
 - edge perturbation by SMBI
 - 3D magnetic field perturbation: RMP
 - small or no ELM regimes: type II, grassy, QH-mode, I-mode etc

• **3D magnetic field (RMP) has been actively investigated from KSTAR 2011 as the most plausible technique**
 - ELM suppression by n=1 RMP (2011)
 - ELM suppression by n=2 RMP (2012)

* Y.M. Jeon, et al., IAEA-FEC, EX/3-3 (2012)
ELM-suppression by n=1 RMP revisited showing similar \(q_{95} \)-window and significantly extended

Revisited with different plasma parameters except \(q_{95} \)

(2012) \(I_p=0.5\text{MA}, B_T=1.8\text{T} \)
\(\rightarrow q_{95}=6.0\sim6.5 \)

(2011) \(I_p=0.6\text{MA}, B_T=2.0\text{T} \)
\(\rightarrow q_{95}=6.0\sim6.5 \)

\[\frac{\Delta n_e}{<n_e>} \leq 10\% \]
\[\frac{\Delta W_{tot}}{W_{tot}} \leq 15\% \]
\[\frac{\Delta \beta_p}{\beta_p} \leq 15\% \]
ELM-suppression by n=2 RMP successfully demonstrated in a consistent way

Dependent on q_{95}
- $B_T=1.5T$, $I_p=0.65MA \Rightarrow q_{95} \sim 3.7$
- Use n=2 mid-plane coil alone

- Significant V_ϕ drop
 - Due to strong magnetic damping via JxB and NTV
1. Experimental conditions for ELM-suppression by RMP

2. Physics mechanism of RMP-driven ELM suppression
1. DIII-D vacuum field guidance for RMPs
 - Sufficient edge stochasticity
 - Field pitch alignment → optimal q_{95} window exists
 - Low edge collisionality

2. Non-resonant RMP fields may have no meaningful role on ELMs
 - The effect on ELMs has not been found clearly in experiments
 - Only it affects the rotation via electro-magnetic torque or NTV torque

⇒ Assumed that ‘resonant fields ONLY on q_{95}’ is important
n=1 RMP was consistent with DIII-D vacuum field criterion

\[\delta B_r(q_{95}) \approx 13.7 \, \text{G} \]

- Analysis for #7821 at t=2.53s with n=1, +90 RMP
- Well aligned field pitch
- Sufficient edge stochasticity (island overlaps)
n=2 even RMP has similar pitch with n=1 RMP, but ...

- Similar field-pitch alignment for both
- Thus we started from #7821 (ELM-suppressed discharge by n=1 RMP)
 : $I_p=0.5$, $B_T=1.8T \rightarrow q_{95} \approx 6.5$
n=2 even RMP has similar pitch with n=1 RMP, but ...

- Similar field-pitch alignment for both

- Thus we started from #7821 (ELM-suppressed discharge by n=1 RMP) : \(I_p=0.5, B_T=1.8T \Rightarrow q_{95}\sim6.5 \)

- However, almost no ELM response observed with \(q_{95}\geq6.0 \)
 - \(I_{FEC} > I_{FEC,\text{threshold}}: H\rightarrow L \) transition
 - \(I_{FEC} < I_{FEC,\text{threshold}}: \) no ELM change
Much smaller resonant field on q_{95} by $n=2$ even RMP

$n=1, +90$ RMP (4kAt) on #7864

$\delta B_R(q_{95}) \approx 11.22 \text{G}$
Much smaller resonant field on q_{95} by $n=2$ even RMP

- dBr at q_{95}:
 - 11.2 G for $n=1$
 - 04.7 G for $n=2$

- $dBr(q_{95}) / dBr(max)$:
 - 80% for $n=1$
 - 51% for $n=2$

- Not optimal alignment
- Weak resonant component with large non-resonant ones
- Lower q_{95} or larger mag. perturbation required
ELMs showed clear resonant responses to n=2 even RMP

No response
ELMs showed clear resonant responses to $n=2$ even RMP

No response

ELMs mitigated
ELMs showed clear resonant responses to n=2 even RMP

No response

ELMs mitigated

ELMs partially suppressed
ELMs showed clear resonant responses to $n=2$ even RMP

- #7864 ($q_{95} \approx 6.4$)
 - No response

- #7955 ($q_{95} \approx 4.7$)
 - ELMs mitigated

- #7961 ($q_{95} \approx 4.1$)
 - ELMs partially suppressed

\rightarrow Clear resonant response and getting close to optimal q_{95}
Further reducing q_{95} made ELMs suppressed in 2012

- BT = 1.5T, IP = 0.65MA
- $q_{95} \sim 3.7$
- n=2 mid-FEC alone with 8.0kAt

- Small decreases of n_e, W_{tot}
- Significant V_ϕ drop (Maybe due to strong magnetic damping)

- Oscillatory D_α is due to sawteeth
n=2 mid-RMP alone needs doubled RMP currents to get ELM suppression with optimal q_{95}

![Graph showing $\delta B_R(q_{95}) \approx 10.97G$ and $n=2$, mid-RMP alone (8kAt) on #8060]
n=2 mid-RMP alone needs doubled RMP currents to get ELM suppression with optimal q_{95}

Both have similar dBr at q_{95}:
- 11.0 G for mid-alone
- 09.3 G for even

dBr(q_{95}) / dBr(max):
- 52% for mid-alone
- 96% for even

- Clearly mid-alone is not the best in view of perturbed field spectrum, but has enough resonant fields
- Even parity could be optimal (small non-resonant fields)
1. DIII-D vacuum field guidance for RMPs
 - Sufficient edge stochasticity
 - Field pitch alignment \rightarrow optimal q_{95} window exists
 - Low edge collisionality

2. Non-resonant RMP fields may have no meaningful role on ELMs
 - The effect on ELMs has not been found clearly in experiments
 - Only it affects the rotation via electro-magnetic torque or NTV torque

\Rightarrow Assumed that ‘resonant fields ONLY on q_{95}’ is important
1. DIII-D vacuum field guidance for RMPs
 - Sufficient edge stochasticity
 - Field pitch alignment \Rightarrow optimal q_{95} window exists
 - Low edge collisionality

2. Non-resonant RMP fields may have no meaningful role on ELMs
 - The effect on ELMs has not been found clearly in experiments
 - Only it affects the rotation via electro-magnetic torque or NTV torque

\Rightarrow Assumed that ‘resonant fields ONLY on q_{95}’ is important

\Rightarrow Suggests that ELM-suppression requires (1) optimal q_{95} and (2) sufficient $\delta B_R(q_{95})$ above a threshold
1. From DIII-D
 - RMP discharge is P-B stable
 - Edge rotation increase due to RMP
 - Steeper T_e pedestal due to RMP
Most of edge profiles showed pedestal weakening due to RMP fields

When ELMs suppressed by n=1 RMP

- $V_{\phi,\text{edge}}$ decreased
- $T_{i,\text{edge}}$ decreased
- $T_{e,\text{edge}}$ didn’t change much
- $n_{e,\text{edge}}$ may decreased (pump-out)

→ Reduced pressure gradient
→ Maybe stable to edge (PB) instability

Worth reminding the increased $V_{\phi,\text{edge}}$ in DIII-D ELM-suppressed discharge with a strong correlation with E_r change

→ Rotation change may not be the dominant role on ELM-suppression in KSTAR
Physics mechanism of RMP-driven ELM-suppression?

1. From DIII-D
 - RMP discharge is P-B stable
 - Edge rotation increase due to RMP
 - Steeper T_e pedestal due to RMP

\Rightarrow Still not clear what made plasma get into the edge-stable regime
Physics mechanism of RMP-driven ELM-suppression?

1. From DIII-D
 - RMP discharge is P-B stable
 - Edge rotation increase due to RMP
 - Steeper T_e pedestal due to RMP
 ➔ Still not clear what made plasma get into the edge-stable regime

2. P. B. Snyder’s hypothesis (PoP 2012)
 - A necessity of a certain stopping mechanism such as “island opening near pedestal top”
 - But still not clear how those things stop the pedestal evolution
Physics mechanism of RMP-driven ELM-suppression?

1. From DIII-D
 - RMP discharge is P-B stable
 - Edge rotation increase due to RMP
 - Steeper T_e pedestal due to RMP
 ➔ Still not clear what made plasma get into the edge-stable regime

2. P. B. Snyder’s hypothesis (PoP 2012)
 - A necessity of a certain stopping mechanism such as “island opening near pedestal top”
 - But still not clear how those things stop the pedestal evolution

➔ KSTAR may suggest that RMP made a transition (or bifurcation) to a new state, where the electro-magnetic turbulence is significant
A clue can be found on a transient phase

Event - A
: base-level dropped before ELM
 ➔ Enhanced particle confinement
 ➔ Mag. Fluctuation disappeared
 - Consistent with 2011

Event - B
: base-level dropped twice with clearance of magnetic fluctuation
 ➔ What happened ??
Dα in isolated ELMs shows a novel behavior

Event - A

- base-level dropped before ELM crash
 → Particle confinement enhanced

- Mag. Fluctuation cleaned up

- nₑ and Tₑ also increased
A transition-like novel behavior of D_α found during RMP turning off

- When the I_{RMP} reached to $\sim 1.0\text{kA/t}$, it suddenly have a fast transition which resembles L/H transition.
- Also the magnetic fluctuation and the edge density fluctuation cleaned up simultaneously
- Note that the decreased level of D_α in event-B is different than one in event-A

\Rightarrow Might be A novel transition/bifurcation due to RMP
Transition is distinguishable

Base-level of D_α increased due to RMPs
\leftarrow Mainly due to density pump-out, but not all ...

\leftarrow Distinguishable transition
Robust ELM suppression by using low-n RMPs in KSTAR
- Both n=1 (2011) and n=2 (2012) RMP led ELM suppressions in a same experimental logic
- Obviously the resonance condition of applied fields is of most importance

A fast transition accompanying enhancement of EM turbulence may explain how ELMs were suppressed under RMPs
- Possibly there might be a fast transition or bifurcation of state to enter the ELM-suppression phase in application of RMP under a certain condition
Base-level of D_α on ELM-suppression is changed

Base-level of D_α increased due to RMPs
\Leftarrow Mainly due to density pump-out, but not all ...

\Leftarrow Different base-level on ELM-suppression
Occasional bunch of ELMs were seen on ELM-suppression phase
(2011) Saturated T_e evolution and broadband increase of magnetic fluctuations were observed under RMP.

- Could be an experimental evidence of P.B. Snyder’s hypothesis
- Similar observations made in 2012, too
Longer ELM suppression (~8.0s) tried but was incompletely suppressed

- A few bundles of high frequency ELMs appeared (the reason is not clear yet)
- Although, it didn’t lose the characteristics of ELM suppression
By fitting q95, n=2 RMP also suppressed ELMs in 2012

- BT=1.5T, IP=0.65MA
- q95 ~ 3.7
- n=2 mid-FEC alone with 4.0kA/t

- ELMs were suppressed
- Oscillatory D_α is due to sawteeth
Revisited with extended ELM suppression by n=1 RMP

(2012)
IP=0.5 MA, BT=1.8 T
→ q95 = 6.0~6.5

(2011)
IP=0.6 MA, BT=2.0 T
→ q95 = 6.0~6.5

10% density pump-out
15% W_{tot} degradation
15% β_p degradation

#7820
Edge T_e evolution was altered due to RMP

ELMs suppressed

T_e (keV)

A: linear build-up
B: saturated by RMP
C: stably saturated
Saturated edge Te evolution under RMPs

Plasma boundary (LCFS)